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Overview

-

Spatial dependence and spatial statistics

Some examples of spatial dependence
Visualization of spatial data

Specifying dependence structures
Testing for spatial dependence

Spatial autoregressive linear model
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Pointers to advanced topics
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Examples of spatial dependence

- .

Tale of two neighbors, Promethia and Tragedia

°

Promethia does everything right, but below average growth rate
Neighbor Tragedia has bad policies and disastrous economic performance
Promethia’s low growth rate reflects spill-over effects from Tragedia

Observations for Promethia and Tragedia clearly not independent

© o 0o o

Easterly & Levine find that Africa term in cross country growth models becomes

non-significant when controlling for contagion
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Examples of spatial dependence

-

Civil wars not determined by attributes of states alone,
events in other states can influence risk

® Central Africa: Uganda, Rwanda, Zaire, Kashmir conflict
Local character of environmental problems

® Murdoch and Sandler: SO> emission reductions in Europe easier to achieve since
states more private benefits from reducing omissions

® |esslocal problems (e.g., NOX and CO2) more difficult
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Visualization

y .

® Tables large, often unwieldy

Isualization may suggest important structure in data

Maps can summarize information on one page

Where are the high and low values located?

© o o

Spatial structure/pattern?
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The Snow map
-

Snow’s map of cholera deaths in London T

#® September 1854 cholera epidemic

# 500 from same section of London died within a ten-day
period

°

Bacteria not yet know, sources of disease obscure

# Snow had previously published paper on water as
possible source of spread of cholera

# Created a map of location of deaths and water pump
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The Snow map

B Pump sites

*" Deaths from cholers
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Global incomedistribution

O under 930
O 930 - 1364

O 1364 - 2479
O 2479 - 3676
O 3676 -5181
@ 5181 - 7379
B 7379 -11332
B 11332 - 22524
B over 22524
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Red (Bush) and blue (Kerry) counties
- o
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Political maps and cartograms

-

Displaying geographical shapes/units alone can be
misleading

=

# Counties have very different population size

® More rural than urban counties, associated with
differences in voting patters

# Map of blue and red populations should weight by
population

# Cartogram scaling each county by population size
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Red and blue countiesrevisited

’ i University of Essex J

Spatial analysis and spatial dependence — p. 11/:



Democr atization in the World

| .

Auntocracy Democracy
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Democr atization in the World
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Mapping data
-

# Most software proprietary and expensive (ESRI
ArcView, Arcinfo)

# However, possible to use ESRI shapefiles to generate
maps in the free package R

® http://ww. r-project.org

°

Shapefiles for many areas freely available on web

# For utilities to create diffusion based cartograms, see
http://ww- personal . um ch. edu/ ~ngast ner/
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Spatial dependence
B o

Values y; and y; often similar for neighbors ¢ and j

Many diagnostic tests for spatial dependence available
Global dependence: Moran’s [

© o o o

Tests for spatial dependence presumes a pre-specified
form of dependence

°

Hence, tests only able to reject/not reject particular
specification
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Connectivity

fPattern of connectivities between observations T

# Connectivity matrix W
s N x N matrix where entries w; ; acquire non-zero
values if units : and j connected

s Alternatively, inverse distance weights based on

distance d;; where w;; = an/dfjd,,
j=1 /%

# Criteria for connectivity?

# Time has inherent ordering, but N x (N — 1) possible
relationships in space for N units
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Connectivity

-

Many possible forms of distance/connectivities T

#® Geography-distance link often suggests geographical
dependence (e.g., contiguous states, proximate states)

#® Observed interaction patterns (e.g., trade,
communications)

# Cultural distance (e.g., links between languages)

# Reachability indices vs. geographical distance (e.g.,
time to travel between points)

Must be justified in each application
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Moran'sl

-

How similar Is i to its neighbors J?

N2 0 Wi —9) (Y — )
(Zz D Cij) > i (Ui — 5)°

where ¢;; IS an element in a binary connectivity matrix C

I

(1)

Z = 1/SE(I) indicates whether clustering is “significant”

E.g., Moran’s I = 0.47,7 > 10 for spatial clustering in
democracy, reject H0 of no clustering
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Spatial dependence
-

Usually assume thatdv Y = f(X)

# Looking at unconditional spatial dependence
problematic since the ivs X also likely to be
non-randomly distributed

® Test whether residuals from a conditional model
displays residual spatial clustering

#® EX: residuals from regression of expected democracy
conditional on development still shows spatial
dependence

# Moran’s I = 0.40, Z > 8 for spatial clustering in residuals
from regression, reject H0 of no clustering, even after
controlling for GDP per capita
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Spatial dependence
B

fWhy IS spatial dependence a problem in a regression
model?

#® Regression assumptions imply that errors of individual
observations should be independent and unrelated:
b [ei,ej] = (0 for =+ 7.

# Spatial dependence violates this assumption, since
Cov(y;,y;) tends to be positive

°

Standard properties do not hold

# More fundamentally, a model assuming that
observations are independent is fundamentally
Incorrect
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Spatial regression models

- .

ntroduce spatial structure into regression model
Spatial autoregressive (SAR) model: add a right hand side
“spatial lag” WY, where W is row-normalized

E(y;|x;, Y) = Bo + 31371 + pw;.Y, (2)

Estimation more difficult since y now on both sides of

equation, but can be estimated by M LE or IV
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Spatial regression models

(1) (2) (3)
Variable OLS Spatial autoregressive estimates
Constant -19.71 (3.66) -12.96 (3.35) -19.39 (3.39)
Ln(GDPPC) 2.66 (0.42) 1.72 (0.41) 2.22 (0.41)
p1 (distance) 0.48 (0.09)
p2 (trade) 0.51 (0.14)
N 170 170 170
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SAR resaults
-

Interpretation of SAR T

#® p estimate of spatial dependence, influence of
neighbors

# Model implies feedback:
® Change in IV in one state will first affects its DV

® Then affect other states

® Feed back to country itself

#® Hence, coefficients for ivs X not fully comparable to
OLS, must consider implied “equilibrium effect”
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SAR resaults

Y = pWY + X8+ ¢

e=(I—pW)Y — X3

Y =(I—pW) ' X8+ (I —pW) e
E(Y)=(-pW) X3

l.e., the “equilibrium effect” of a change in IV will depend
upon connectivities with other states, and vary from country
to country
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SAR resaults
5

SAR with geographical distance:

=

® effect of a unit increase in log of GDP per capita ranges from a 1.75 to a 2.04 point

increase in level of democracy, average effect 1.80
SAR with trade connectivities:

® 3 one unit change in In GDP per capita on average leads to a 2.24 point increase in

democracy, effects for individual countries ranging from 2.22 to 2.52
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SAR with two matrices

Y = Xi5+01W§4Y+P2WiBY+€¢
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SAR with two matrices
L o

Table 1. Democracy and Social Requisites, 1998

(1) (2) (3) (4)
Variable OLS Spatial autoregressive estimates
Constant -19.71 (3.66) -12.96 (3.35) -19.39(3.39) -13.24 (3.11)
Ln(GDPPC) 2.66 (0.42) 1.72 (0.41) 2.22 (0.41) 1.53 (0.37)
p1 (distance) 0.48 (0.09) 0.89 (0.19)
p2 (trade) 0.51 (0.14) 0.59 (0.43)
N 170 170 170 170
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Binary dependent variables

- .

#® SAR less appropriate for categorical dv’s such as
conflict, autologistic possible alternative

#® Assume a locally dependent Markov field
s Pr(yi|yj,j #1) dependsonlyony;, <= jisa
neighbor of 7 or w; ; =1

In the autologistic, condition likelihood of y; = 1 on conflict
among neighbors y;

e+ X Br+7Yi

Privi =1l = T arxmm

# If v = 0this is a standard logistic, observations not
g conditional on one another J
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Example of autologistic

-

Ward and Gleditsch (2002), N=138

Spatial Parameters

Intercept Democracy Democracy Conflict

Estimator « 061 B2 ~
Logistic -1.309 -0.022 -0.015 —
MPL ) -1.840 -0.020 0.013 0.298
MCMC ML 6 -1.712 -0.053 -0.003 0.261
Logistic SEs 0.218 0.033 0.048 —
MPL SEs 0.333 0.033 0.051 0.126
MCMC SEs 0.060 0.006 0.010 0.013
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Example of autologistic

-

Prediction based on 1988 estimates for 1989 to 1998 T
period, 7 =0.35 threshold

Observed
Predicted No Yes
No 60 17
Yes 29 33
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