Spatial analysis and spatial dependence

Kristian Skrede Gleditsch

Department of Government
University of Essex

http://privatewww.essex.ac.uk/~ksg/

Overview

Spatial dependence and spatial statistics

- Some examples of spatial dependence
- Visualization of spatial data
- Specifying dependence structures
- Testing for spatial dependence
- Spatial autoregressive linear model
- Pointers to advanced topics

Examples of spatial dependence

Tale of two neighbors, Promethia and Tragedia

- Promethia does everything right, but below average growth rate
- Neighbor Tragedia has bad policies and disastrous economic performance
- Promethia's low growth rate reflects spill-over effects from Tragedia
- Observations for Promethia and Tragedia clearly not independent
- Easterly & Levine find that Africa term in cross country growth models becomes non-significant when controlling for contagion

Examples of spatial dependence

Civil wars not determined by attributes of states alone, events in other states can influence risk

Central Africa: Uganda, Rwanda, Zaire, Kashmir conflict

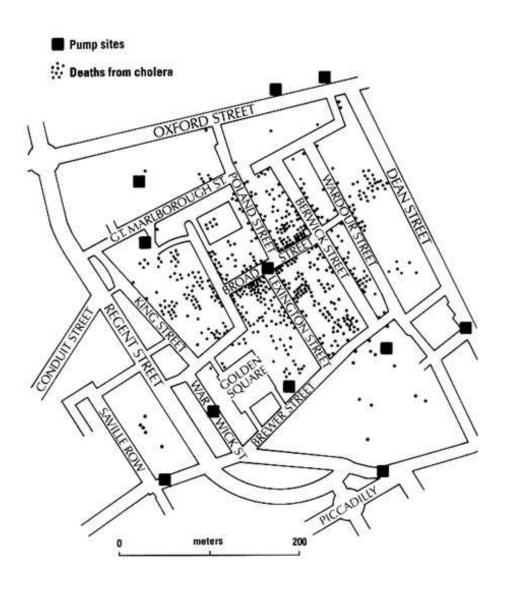
Local character of environmental problems

- ightharpoonup Murdoch and Sandler: SO_2 emission reductions in Europe easier to achieve since states more private benefits from reducing omissions
- ullet Less local problems (e.g., NOX and CO2) more difficult

Visualization

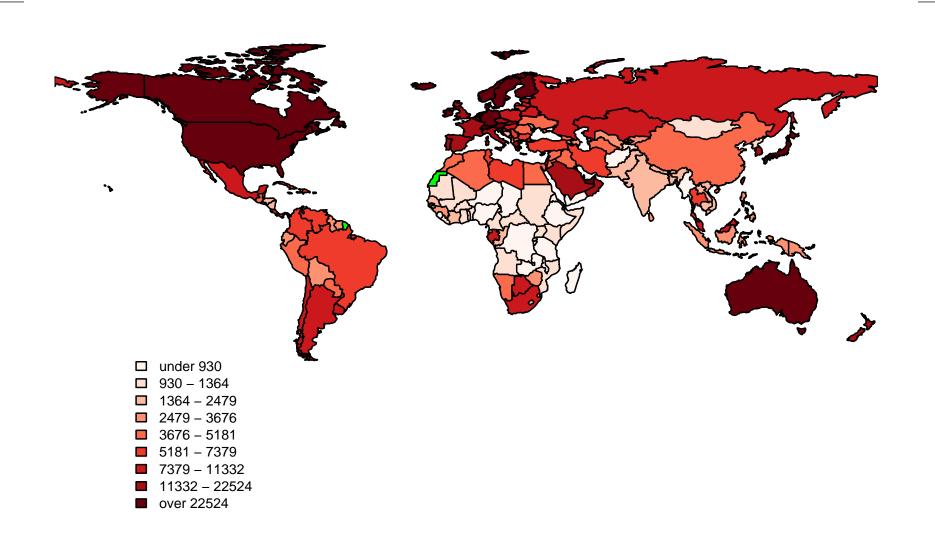
Visualization may suggest important structure in data

- Tables large, often unwieldy
- Maps can summarize information on one page
- Where are the high and low values located?
- Spatial structure/pattern?

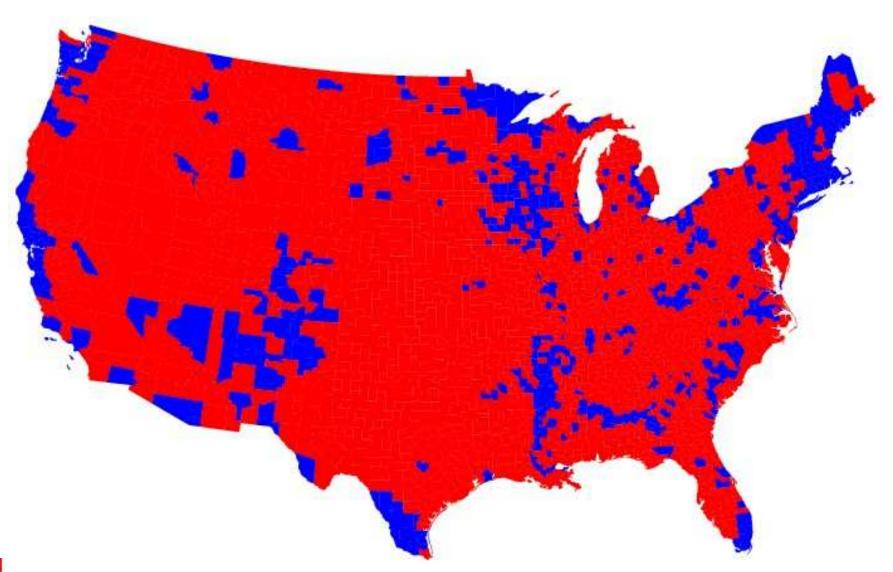

The Snow map

Snow's map of cholera deaths in London

- September 1854 cholera epidemic
- 500 from same section of London died within a ten-day period
- Bacteria not yet know, sources of disease obscure
- Snow had previously published paper on water as possible source of spread of cholera
- Created a map of location of deaths and water pump

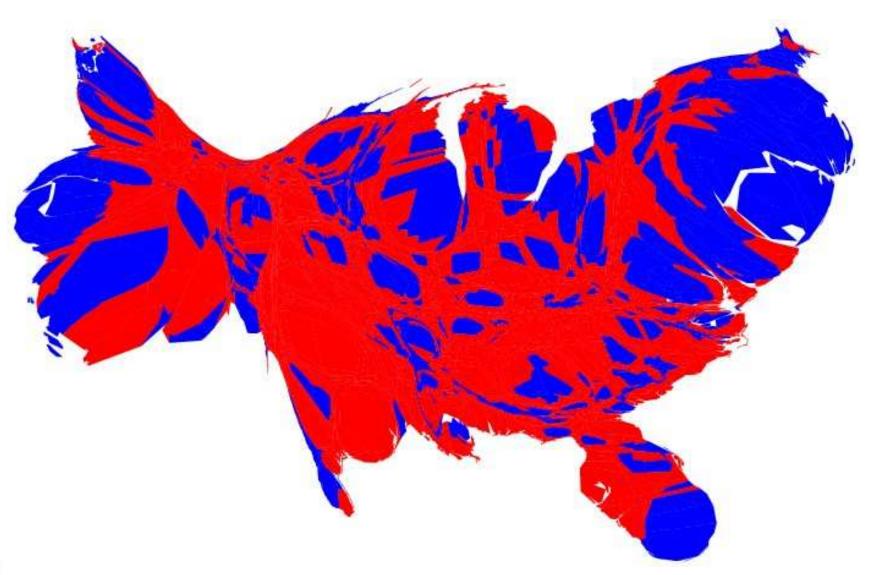


The Snow map

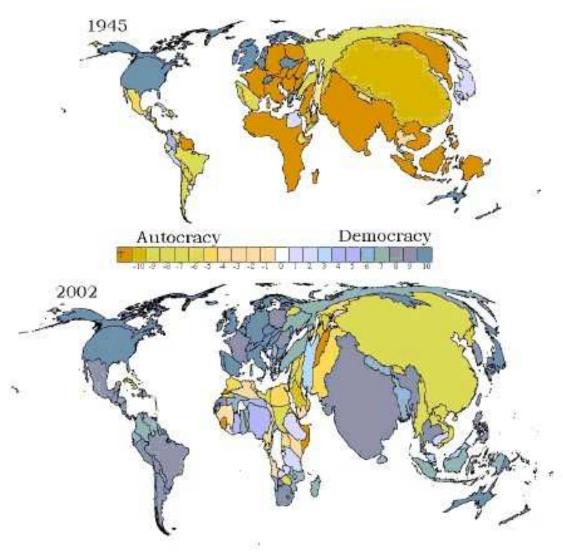


Global income distribution

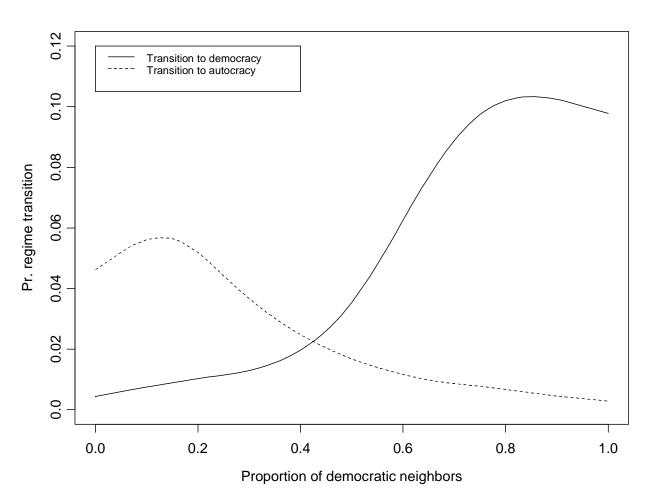
Red (Bush) and blue (Kerry) counties


Political maps and cartograms

Displaying geographical shapes/units alone can be misleading


- Counties have very different population size
- More rural than urban counties, associated with differences in voting patters
- Map of blue and red populations should weight by population
- Cartogram scaling each county by population size

Red and blue counties revisited



Democratization in the World

Democratization in the World

Mapping data

- Most software proprietary and expensive (ESRI ArcView, ArcInfo)
- However, possible to use ESRI shapefiles to generate maps in the free package R
- http://www.r-project.org
- Shapefiles for many areas freely available on web
- For utilities to create diffusion based cartograms, see http://www-personal.umich.edu/~mgastner/

Spatial dependence

- Values y_i and y_j often similar for neighbors i and j
- Many diagnostic tests for spatial dependence available
- Global dependence: Moran's I
- Tests for spatial dependence presumes a pre-specified form of dependence
- Hence, tests only able to reject/not reject particular specification

Connectivity

Pattern of connectivities between observations

- Connectivity matrix W
 - $N \times N$ matrix where entries $w_{i,j}$ acquire non-zero values if units i and j connected
 - Alternatively, inverse distance weights based on distance d_{ij} where $w_{ij} = \frac{1/d_{ij}}{\sum_{j=1}^{n} 1/d_{ij}}$
- Criteria for connectivity?
- Time has inherent ordering, but $N \times (N-1)$ possible relationships in space for N units

Connectivity

Many possible forms of distance/connectivities

- Geography-distance link often suggests geographical dependence (e.g., contiguous states, proximate states)
- Observed interaction patterns (e.g., trade, communications)
- Cultural distance (e.g., links between languages)
- Reachability indices vs. geographical distance (e.g., time to travel between points)

Must be justified in each application

Moran's I

How similar is i to its neighbors J?

$$I = \frac{N \sum_{i} \sum_{j} c_{ij} (y_{i} - \bar{y}) (y_{j} - \bar{y})}{\left(\sum_{i} \sum_{j} c_{ij}\right) \sum_{i} (y_{i} - \bar{y})^{2}}$$
(1)

where c_{ij} is an element in a binary connectivity matrix C

Z = I/SE(I) indicates whether clustering is "significant"

E.g., Moran's I=0.47, Z>10 for spatial clustering in democracy, reject H0 of no clustering

Spatial dependence

Usually assume that dv Y = f(X)

- Looking at unconditional spatial dependence problematic since the ivs X also likely to be non-randomly distributed
- Test whether residuals from a conditional model displays residual spatial clustering
- Ex: residuals from regression of expected democracy conditional on development still shows spatial dependence
- Moran's I=0.40, Z>8 for spatial clustering in residuals from regression, reject H0 of no clustering, even after controlling for GDP per capita

Spatial dependence

Why is spatial dependence a problem in a regression model?

- Regression assumptions imply that errors of individual observations should be independent and unrelated: $E[\epsilon_i, \epsilon_j] = 0$ for $i \neq j$.
- Spatial dependence violates this assumption, since $Cov(y_i, y_j)$ tends to be positive
- Standard properties do not hold
- More fundamentally, a model assuming that observations are independent is fundamentally incorrect

Spatial regression models

Introduce spatial structure into regression model

Spatial autoregressive (SAR) model: add a right hand side "spatial lag" $\mathbf{W}Y$, where \mathbf{W} is row-normalized

$$E(y_i|x_i,Y) = \widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \widehat{\rho} w_i Y, \tag{2}$$

Estimation more difficult since y now on both sides of

equation, but can be estimated by MLE or IV

Spatial regression models

	(1)	(2)	(3)	
Variable	OLS	Spatial autoregressive estimates		
Constant	-19.71 (3.66)	-12.96 (3.35)	-19.39 (3.39)	
Ln(GDPPC)	2.66 (0.42)	1.72 (0.41)	2.22 (0.41)	
ρ_1 (distance)		0.48 (0.09)		
$ ho_2$ (trade)			0.51 (0.14)	
N	170	170	170	

SAR results

Interpretation of SAR

- $m{\rho}$ estimate of spatial dependence, influence of neighbors
- Model implies feedback:
 - Change in IV in one state will first affects its DV
 - Then affect other states
 - Feed back to country itself
- Hence, coefficients for ivs X not fully comparable to OLS, must consider implied "equilibrium effect"

SAR results

$$Y = \rho \mathbf{W}Y + \mathbf{X}\beta + \epsilon$$

$$\epsilon = (I - \rho \mathbf{W})Y - \mathbf{X}\beta$$

$$Y = (I - \rho \mathbf{W})^{-1}\mathbf{X}\beta + (I - \rho \mathbf{W})^{-1}\epsilon$$

$$E(Y) = (I - \rho \mathbf{W})^{-1}\mathbf{X}\beta$$

I.e., the "equilibrium effect" of a change in IV will depend upon connectivities with other states, and vary from country to country

SAR results

SAR with geographical distance:

effect of a unit increase in log of GDP per capita ranges from a 1.75 to a 2.04 point increase in level of democracy, average effect 1.80

SAR with trade connectivities:

a one unit change in In GDP per capita on average leads to a 2.24 point increase in democracy, effects for individual countries ranging from 2.22 to 2.52

SAR with two matrices

$$y_i = \mathbf{x}_i \beta + \rho_1 \mathbf{w}_i^A \mathbf{y} + \rho_2 \mathbf{w}_i^B \mathbf{y} + \varepsilon_i$$

SAR with two matrices

Table 1: Democracy and Social Requisites, 1998

	(1)	(2)	(3)	(4)
Variable	OLS	Spatial autoregressive estimates		
Constant	-19.71 (3.66)	-12.96 (3.35)	-19.39 (3.39)	-13.24 (3.11)
Ln(GDPPC)	2.66 (0.42)	1.72 (0.41)	2.22 (0.41)	1.53 (0.37)
ρ_1 (distance)		0.48 (0.09)		0.89 (0.19)
$ ho_2$ (trade)			0.51 (0.14)	0.59 (0.43)
N	170	170	170	170

Binary dependent variables

- SAR less appropriate for categorical dv's such as conflict, autologistic possible alternative
- Assume a locally dependent Markov field
 - $Pr(y_i \mid y_j, j \neq i)$ depends only on $y_j \iff j$ is a neighbor of i or $w_{i,j} = 1$

In the autologistic, condition likelihood of $y_i=1$ on conflict among neighbors $\widetilde{y_i}$

$$Pr[y_i = 1 | \widetilde{y}_i] = \frac{e^{\alpha + \mathbf{X}_i' \beta_k + \gamma \widetilde{y}_i}}{1 + e^{\alpha + \mathbf{X}_i' \beta_k + \gamma \widetilde{y}_i}}$$

• If $\gamma = 0$ this is a standard logistic, observations not conditional on one another

Jniversity of Essex

Example of autologistic

Ward and Gleditsch (2002), N=138

Intercept	Democracy	Democracy	Conflict
α	eta_1	eta_2	γ
-1.309	-0.022	-0.015	_
-1.840	-0.020	0.013	0.298
-1.712	-0.053	-0.003	0.261
0.218	0.033	0.048	_
0.333	0.033	0.051	0.126
0.060	0.006	0.010	0.013
	α -1.309 -1.840 -1.712 0.218 0.333	$\begin{array}{cccc} \alpha & \beta_1 \\ -1.309 & -0.022 \\ -1.840 & -0.020 \\ -1.712 & -0.053 \\ \hline 0.218 & 0.033 \\ 0.333 & 0.033 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Example of autologistic

Prediction based on 1988 estimates for 1989 to 1998 period, $\hat{\pi}$ =0.35 threshold

	Observed	
Predicted	No	Yes
No	60	17
Yes	29	33

